-
UID:1
-
- 注册时间2003-12-31
- 最后登录2025-09-11
- 在线时间701小时
-
- 发帖17325
- 搜Ta的帖子
- 精华5
- 金钱88512685
- 威望88
- 贡献值20070
-
访问TA的空间加好友用道具
- 发帖
- 17325
- 金钱
- 88512685
- 威望
- 88
- 贡献值
- 20070
|
iC\=U jYx( %zVv3p: [ ~d8o,.n`1 |W[rywxx 正弦函数图像的变换 ImW~Jy T+( A7Qrx% FC.-u"V FX%E7H ]zAg6*-/B 反函数
$VNn`0^gF KPrxw }P
)^xmy6k uvd> f2XD^:Gc 中线定圆 8zv6Mx Qc/J"<Lx M#,+p8 三垂线定理 e6a8ad !7|9r$ %^A++Z$` jt*@,+e| %gB0D8,vo 旋转六棱锥 %ua5T9H Z 1z!Lk*C) @1X1E 2:
J?DyTs3Z Z k_&Kw| 参数方程概念 A>S2BL#= EPfVS
X:bgY 三垂线逆定理 cE?J]5#^ 6YbSzx`?k < ,n4
|z) epe}^Pl 旋转三棱锥 A}O9e ]P5u:~U QJ'C?hn xJlq2cK ~Y[b
QuA=) 椭圆的定义(二) Wb$bCR#?< HRh".!lxy s)=7tHoqB) 两条异面直线上两点之间的距离 ".=EAXVU S d -+a w=5qth7 M3;B]iRQD 可旋转正方体的截面 ->UrWW^ Ac%K+Pgk. Dbd5d]]n3 %UhF=C 锥体体积(杨信龙) l1-FL-1 > ^}z qlP=Y .H 两条异面直线所成的角 \v_(
* -tJ*F!w6U
su$juI{ L x&ZWF$ 圆与圆、线 2sH5<5G' =<icHt6s xR3A4m )i>KgX 三角函数曲线演示图(张晓武) ,\IZ/1 ^}#!?"Y 8X5XwFf} 正弦函数图像 FB`HwE< wXnt3)e V2X(f6v 7085&\9 圆柱的截面 _BV:i:z Bc@e;k@i g*uO
IF u ""=9>0 新编高一教材:三角图象变换(张建伟) 9#7zjrB TM;)[R@ gf@Dy6< 函数图像的几何变换 !ywc). ]e &3efJ?8 ~%ZO8X:^ 82<!b]^1 定比分圆 Z:{
Z&HQC 2I ' wEP:} Y|L57F 球的体积(潘志剑) JB7]51WH@ hkY E7 bYfcn]N 直线和平面垂直的判定定 N C&1l] AKVmUS;70 {iRNnh ?.H*!u+9> 角定抛物
slbV[xR ?5D7n"jY &2DW Yp8$0KK 函数y=Asin(wx+c) (~~=<0S 2= _.K( TBzM~y 对称问题 _1a2Z\ 1,E/So 0;9LIL5
u|C
9[( 双焦定椭 R B!g,u |N*>K a; U"Y$7~ W*0KAC`m 向量的运算 Z=xrjE bF.Aj8ZQ <Aa%Uwpc 左右平移、伸缩变换 Wd7*sa3T 8`D_"3j3g\ n~h%K7
c 8[k-8h| 线线定双 9M6&+1XE vc<8ApK3V +hfl.OBy `fH6E8N 椭圆的定义和性质 \,WPFV
c~V\,lcI
1DX=\BWp 集合的运算 ^l9S5
{ SFjN5u C-(&zwj?! <K43f#% 直线与曲线交点03 QxK%ZaFZA <(v!Xj^yO #pZ3xa3R 1@am'#< 抛物线及其标准方程 +mY(6|1 $I.'7
&h; 5b&'gd^d 椭圆定义(一) uJ[dO} 4x:fOhtP gG}<l ': `
p)#! 直线与曲线交点05 h:|aQJG5 nPKj%g3h
/+rHy7(\ UZyo:*yB 等比数列的前n项和 c9Cp!.#*E (qaY,>je]D fE(rDQI 椭圆定义(二) 'b-}KDP ]8RcZn 3V-pLs| n@*NQ`(_ 直线与曲线交点01 }{[F+|\>,e 8NLk`/ UW\.!TV *_ "j"{ 对数函数和简单对数方程的复习 3+)i23[4=\ kWgxswl7H hgm`6TQ 正切函数图像 k?_Miqr Ij"`pdp W<~(ieu:K~ s)}C&T$Y. 直线与曲线交点04 7y:J@fh< WKN\*N < spJB6n(
!4|7U\; 数列的极限 =ahD'*R^A C\1Dy5 3o z] /
Qbt 椭圆及其标准方程 +~7@K{6q- A;h~Fx6s `S%pD.g,2 =x=#Etj| !?]NMf_ 直线与曲线交点06 E}~GX G t/HE@xPxI5 [~x
Ql 5)0R: 数学归纳法(复习课) hEDj"`Px 4PNl3N3,n .Zo8KwkFY Zd042
% 球的体积
oM J5; =YI<L8@g~ x6m21DW w 2nk}'HBe kFeuKSa^d 直线与曲线交点02 s@0#w*N h T4fKc7P H$Q_K<V 3HWI;
半角正切公式证明 )abo5
;+cZS= 41$7P[M; s<n5^Vxy 两角和余弦公式 e)O6k7U$ XBCz\f ZfS-W&6Z wuI+$? 反 函 数 evq*&.6\ dKhDO`.s *ZAue
. $kg!XT{V 幂函数 "QA!z\0\ '\P6NszY~ )0YMi!&j` !DXKn\aQf 对数函数 flnoK%wi //g~1( a,!
c6'QE g?)9zJ9 幂函数的概念 LC2t,!RRl& [Cvo^cC M{1't %\2
ll=p1 g#W )EXUR 指数函数的图象 ohOze\T)= *ix&"|h uveTx
*q\Ve)
E} LY-fp+ 指数与对数函数的图象 b[%sKl .IE2d%]? aTxss:7] km|;T! y=Asin(ωx+b) q]DV49UK ~K 5eO- !X*+Ct^ =]K;" r8A
三角公式总表 7LbBS:@3z_ %A|9
=x* *0^!%Y'/4 TmxhP
nJ~ 三角函数单元小结 7jQOwzj `qbf_;\ |7LhE+E 5
B< |
|